Eta Forms and the Chern Character

نویسنده

  • S. SCOTT
چکیده

The semi-topological nature of the eta-invariant of a self-adjoint elliptic differential operator derives from a relative identification with a Chern character. This remarkable semi-locality property of the eta-invariant can be seen in spectral flow formulae and many other applications [APS2, APS3, BC1, DZ1, L1]. In this paper we prove two geometric index theorems for a family of first-order elliptic operators over a manifold with boundary by computing eta form representatives for the Chern character classes of the index bundle. The eta forms occur as relative and regularized traces on infinite-dimensional vector bundles realized as the limiting values of superconnection character forms. The formulas are non-local and general, they do not require spin structures, compatibility with Clifford actions, or dimensional restrictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 3 A ug 2 00 7 DIFFERENTIAL TWISTED K - THEORY AND APPLICATIONS

In this paper, we develop differential characters in twisted K-theory and use them to define a twisted Chern character. In the usual formalism the ‘twist’ is given by a degree three Čech class while we work with differential twisted K-theory with twisting given by a degree 3 Deligne class. This resolves an unsatisfactory dependence on choices of representatives of differential forms in the defi...

متن کامل

Eta Forms and the Odd Pseudodifferential Families Index

Let A(t) be an elliptic, product-type suspended (which is to say parameter-dependant in a symbolic way) family of pseudodifferential operators on the fibres of a fibration φ with base Y. The standard example is A + it where A is a family, in the usual sense, of first order, self-adjoint and elliptic pseudodifferential operators and t ∈ R is the ‘suspending’ parameter. Let πA : A(φ) −→ Y be the ...

متن کامل

6 M ay 2 00 6 Noncommutative Maslov Index and Eta - Forms

We define and prove a noncommutative generalization of a formula relating the Maslov index of a triple of Lagrangian subspaces of a symplectic vector space to eta-invariants associated to a pair of Lagrangian subspaces. The noncommutative Maslov index, defined for modules over a C∗-algebra A, is an element in K0(A). The generalized formula calculates its Chern character in the de Rham homology ...

متن کامل

Brs-chern-simons Forms and Cyclic Homology

We use some BRS techniques to construct Chern-Simons forms generalizing the Chern character of K1 groups in the Cuntz-Quillen description of cyclic homology. MSC91: 19D55, 81T13, 81T50

متن کامل

Explicit computation of the Chern character forms

We propose a method for explicit computation of the Chern character form of a holomorphic Hermitian vector bundle (E, h) over a complex manifold X in a local holomorphic frame. First, we use the descent equations arising in the double complex of (p, q)-forms on X and find the explicit degree decomposition of the Chern–Simons form csk associated to the Chern character form chk of (E, h). Second,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002